Women Having Sex With Snakes Galleries
LINK - https://urllio.com/2t8qRP
According to scientists, this changes the way they see snakes mating. Apparently, it is no coercion but actually seduction. When 98.7 The Shark interviewed a male snake we found outside the studio, he told us this was news to him. What do snakes and women have in common? The female pleasure buzzer. [Source Daily Mail]
It is well known that adult humans detect images of snakes as targets more quickly than images of flowers as targets whether the images are in color or gray-scale. When such visual searches were performed by a total of 60 adult premenopausal healthy women in the present study to examine whether their performance would fluctuate across the phases of the menstrual cycle, snake detection was found to become temporarily enhanced during the luteal phase as compared to early or late follicular phases. This is the first demonstration of the existence of within-individual variation of the activity of the fear module, as a predictable change in cognitive strength, which appears likely to be due to the hormonal changes that occur in the menstrual cycle of healthy women.
Mood, cognition and social behavior may fluctuate in women across the phases of the menstrual cycle according to changes in the blood concentration levels of a variety of hormones1,2,3. The influence of hormonal changes caused by ovulation has become an intensive focus of research recently. Such changes are associated with predictable changes in cognitive strength in both men and women4. According to various meaures, women are most attractive when they are most susceptible to becoming pregnant (right before ovulation) and least attractive when they are least susceptible to becoming pregnant (during menstruation)5,6. Likewise, men are able to recognize these cues7. Around the period when women are most fertile, men as their partners are extra protective and vigilant. In contrast to such changes in cognitive strength, spatial abilities of women are found to deteriorate according to the secretion of female hormones, especially of estradiol8.
In contrast to the substantial evidence about such influence of the ovulation phase, however, the amount of available evidence for hormonal effects during other phases of the menstrual cycle is still meager, except regarding a pathological syndrome that is known as the premenstrual syndrome (PMS), whose most common symptoms are anxiety, irritability and nervous tension9,10. PMS occurs up to 14 days prior to menses, continues during the luteal phase, when estradiol and progesterone concentrations are high and disappears rapidly after the onset of menses. Although only roughly 30% of premenopausal women can be diagnosed with PMS on the basis of a variety of questionnaires and prospective daily ratings11,12, it is also true that the overwhelming majority of all of healthy women experience some level of premenstrual symptoms during the luteal phase13. Given the robustness and the prevalence of this phenomenon, it is surprising that there have been virtually no reported attempts to reliably assess the influence of the premenstrual hormonal changes in healthy women behaviorally or experimentally. The establishment of a technique for such assessment would obviously be relevant to investigating the relationship between the adverse mood and behavior fluctuations experienced premenstrually by many women besides those suffering from PMS and the hormonal changes underlying those fluctuations. In order to pursue this issue, in the present study, we investigated the within-individual variation of how rapidly healthy women performed snake detection in visual search across the phases of the menstrual cycle.
It is well known that humans are extremely sensitive to biologically threatening stimuli14 and that this is typically the case for their response to poisonous snakes15. Recent investigations have shown that human adults have an attentional bias for the detection of fear-relevant stimuli such as snakes compared to neutral stimuli such as flowers16,17,18. In those studies, typically the researchers presented adults with 3-by-3 matrices of images of fear-relevant stimuli and neutral stimuli. The images were presented either in black and white or in color. When reaction times (RTs) were measured, they were found to be significantly shorter for fear-relevant targets than for neutral targets whether the images were in color or gray-scale. More recent studies have documented that preschool children, 8- to 14-month-old infants and even non-human primates also detect snakes more quickly than flowers in gray-scale19,20,21,22,23. On the basis of their findings, the authors of those studies argued the possible evolution of a fear module in primates that enables them to experience fear of snakes.
In accord with previous reports16,17,18, the present results showed that the female participants detected snakes as the targets more quickly than flowers as the targets, confirming the proposal of the snake detection theory that an evolved bias for the detection of evolutionarily relevant threatening stimuli exists in humans19,20,21. Moreover, the present results revealed the fact that such biased detection became relatively faster during the luteal phase in the menstrual cycle of healthy women, indicating the possibility that a fear module underlying this biased visual search behavior24,25 was temporarily more activated during this phase and presumably would continue to be so during the following phase of early pregnancy if they were pregnant26,27. This behavioral change should be quite adaptive because it could contribute to women's ability to increase their vigilance towards biologically relevant threatening stimuli around themselves during this period of possible pregnancy. This reasoning is also confirmed by field observations28,29 of free-ranging nonhuman primates, which showed that adult females during the comparable endocrinological phase were likely to be more isolated from other group members and to interact with them less often. Interestingly, the authors of both of these field studies mentioned such behavioral change as a rudimentary form of PMS, though quantitative measurements of similar changes in humans are almost impossible practically. If these interpretations are correct, the present findings would provide an important step to link previous neuroimaging studies30,31,32 to clinical work with women with PMS manifested as emotional and cognitive impairments. In all, this is the first demonstration of the existence of within-individual variation of the activity of the fear module in women, as a predictable change in cognitive strength that appears likely to be due to the hormonal changes that occur in the menstrual cycle, particularly due to increased progesterone and estradiol levels.
As for progesterone, however, a recent study33 found that its administration produced mild sedative-like effects in both men and women, a finding that appears to be opposite to the results of the present study. This apparent contradiction might be related to the fact that two of the molecules metabolized from progesterone, allopregnenolone and pregnenolone, are capable of crossing the blood-brain barrier and affecting neural function34 and of increasing the activity of the neurotransmitter GABA, which has effects throughout the cerebral cortex35. Research with animals demonstrated increased anxiety upon administration of progesterone, suggesting that progesterone affects parts of the brain related to anxiety and mood36,37. Those effects taken together with the current neurological findings would be expected to be mediated by the amygdala and related to the negative mood symptoms in humans that are observed during increased allopregnanolone levels. Indeed, this issue was investigated more recently by a neuroimaging study using functional magnetic resonance imaging38. When the recruited women were tested as to whether a single progesterone administration modulated the amygdala response to angry and fearful faces as threatening stimuli, the administration was found to increase the plasma concentrations of progesterone and allopregnanolone to levels that are reached during the luteal phase and early pregnancy. The imaging results revealed that progesterone selectively increased amygdala reactivity39. Subsequent functional connectivity analyses also indicated progesterone modulation of functional coupling of the amygdala with distant brain regions.
These findings appear to be quite consistent with the results of the present study, because as the visual part of the fear module as a behavioral and neural system that enables automatic visual detection as a way for snakes to capture attention, the amygdala is regarded to be important for learning what is threatening and for responding appropriately and to play a major role in helping mammals, including humans, survey and evaluate the environment for danger signals24,25,26,27. Therefore, increased reactivity of this neural complex located in the temporal lobe is predicted to be the neural correlate to the enhancement of snake detection observed during the luteal phase.
They included five videos of a "grossly offensive, disgusting or otherwise obscene character" featuring women having sex with dogs, a man having sex with a snake and a woman having sex with a horse, the court heard.
Dorrington, who admitted four charges of possession of indecent images of people and animals and four counts of possession of indecent films of people and animals, admitted that he had been having an affair and said that he was in counselling with his wife.
As humans have changed the face of the world with their building and urbanization, snakes have had to adapt in order to survive in this new environment. This is particularly true as humans are often not particularly encouraging of snakes.
Some venomous snakes have been found to be able to control whether they release venom when they bite or not. At times, they may choose to deliver a dry bite without releasing venom in order to scare off or intimidate without wasting their venom supplies. 2b1af7f3a8